This policy contains the key procedures that are to be taught throughout the school. It has been written to ensure consistency and progression throughout the school. We are aiming to get each child to show fluency, reasoning and problem solving skills from EYFS – Year 6.

- Although the main focus of this policy is showing the core **Concrete, Pictorial and Abstract** ways of solving Maths problems, it is important to recognise that the ability to calculate mentally lies at the heart of numeracy.
- Mental calculation is not at the exclusion of written recording and should be seen as complementary to and not as separate from it. In every written method there is an element of mental processing.
- Written recording both helps children to clarify their thinking and supports and extends the development of more *fluent* and sophisticated mental strategies.
- Children are encouraged to use the most efficient method for them, making sure they use ones they have a clear understanding of.
- The long-term aim is for children to be able to select an efficient method of their choice that is appropriate for a given task. They should do this by always asking themselves:
- > 'Do I need to use manipulatives to help me?'
- > 'Can I do this using drawings or jottings?'
- 'Do I need to use a written method?'
- > 'Can I do this in my head?'

Stem sentences are in red, these are to help children embed their learning.

Please continue daily counting at the start of the lessons – age appropriate for your year group. E.g. year 3 – embed 2/5/10 from year 2, introduce 3/4/8 for year 3 and when ready – continue with other counting increments.

<u>Addition</u>

Vocab: add, plus, more than, total, sum of,

Bar model, part-part-whole, number line, tens frame, base 10, place value counters, missing numbers,

STEM	Concrete (can we MAKE it?)	Pictorial (can we draw it?)	Abstract (can we write the
sentences			calculation?)
is a whole, is a part, is a part. There are in total.	Use cubes, numicon and others to add two numbers together. Use numicon and cubes to show number bonds.	Whole IO Part Part Part	5+5=10 5 is a part, 5 is a part, the whole is ten.
First Then Now E.g. First there were 4 children on the bus, then 3 children got on, Now there are 7 children on the bus. (this will help with the inverse	Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2

	<u></u>	i mary School Calculation I oncy	
relationship and missing number)			
I need to make ten. I have left over. 10 + is 	Regrouping to make 10; using ten frames and counters/cubes or using Numicon. 6 + 5	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$
	TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent base 10 e.g. lines for tens and dots for ones.	41+8 $1+8=9$ $40+9=49$ $40 + 9 = 49$ $40 + 9 = 49$ $40 + 9 = 49$

Looking for ways to make 10. TO + O using base 10. Continue to develop Children to represent the base 10 or understanding of partitioning and place value. place value counters, in a place value **36 + 25**= 30+20=50 36 + 25 chart 5 + 5 = 1050 + 10 + 1 = 6110s 1s 36 5 36 +25 88 0000 +25 61 Formal method: 88. 6 Conceptual variation; different ways to ask children to solve 21 + 34 Word problems: 21 problems. In year 3, there are 21 V 44 +34 326 children and in year 4, there are 34 children. 775 How many children in total? 21 + 34 =21 + 34 = 55. Prove it Missing digit problems: = 21 + 34 10s 1s 0 ? Calculate the sum of twenty-one and thirty-four. 2 5

St Just Primary School Calculation Policy

Subtraction

Vocab: take away, less than, the difference, subtract, minus, fewer, decrease, exchange

STEM	Concrete	Pictorial	Abstract
Sentences First Then Now e.g. First there were 4 children in the car, then 1 child got out, Now there are 3 children in the car.	Physically taking away objects from a whole (tens frame, numicon, cubes etc) 4 - 3 = 1	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. $\boxed{8-6=2}$	$\begin{array}{c c} \hline \\ \hline $
The whole is The part we are taking away is Start on and count back 	Counting back (using number lines or tracks) 6-2= Children start at 6 and count back 2 1 2 3 4 5 6 7 8 9 10	Children to represent what they see pictorially e.g. 8-6=2 9-4=5 9-4=5 9-4=5 9-6=2 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line 18 - 12 = 6

	School Calculation Policy	
Finding the difference (using cubes, Numicon or other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 - 5, the difference is Children to explore why 9 - 6 = 8 - 5 = 7 - 4 = have the same difference.
	Children to present the ten frame pictorially and discuss what they did to make 10.	When children are confident they can draw this themselves. Remind them to show order and uniform to help them.
Column method using base 10 or place value counters. 48-7 10s 1s 4 4 1	Children to represent the base 10 pictorially. 35 - 23 = draw the 3 tens and cross out the ones cross out the tens look how much remains	Encourage children to use mental strategies

Multiplication

<u>Vocab</u>: double, times, multiplied by, the product of, groups of, lots of, equal groups, exchange

STEM	Concrete	Pictorial	Abstract
sentences			
We are counting in multiples of	Repeated grouping/repeated addition 7 × 2	Children to represent the practical resources in a picture and use a bar	3 × 4 = 12
so we count every There are in each group. There are groups. We have to add times.	2+2+2+2+2+2= There are 7 equal groups, with 2 in each group.	model.	4 + 4 + 4 = 12
lots of is the same as lots of 	Use arrays to illustrate commutativity counters and other objects can also be used. 2 × 5 = 5 × 2 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially. $3 \times 4 = \frac{12}{3}$ $\sqrt{12} \div 4 = \frac{21}{3}$ $(\frac{12}{3} \div 3 = \frac{12}{3}$	Children to be able to use an array to write a range of calculations e.g. • 10 = 2 × 5 • 5 × 2 = 10 • 2 + 2 + 2 + 2 + 2 = 10 • 10 = 5 + 5

			ary School Calcu	<u>Ilation Folicy</u>						
can be partitioned into and	36 x 3 = 109 T O	To first introduce the grid method, use Base 10 before	have done with plac	sent the work they ce value counters in a	numbe	ers and				igit addition
lots of	11 00	moving towards a more	way that they unde	erstand. They can draw	alongs	ide the	e grid.			
ones is	111 88	compact method.	the counters, using	colours to show)	
lots of	111 38	36 x 3 =	different amounts	or just use circles in	×	3	0	5		
tens is	10 108	Make 36 on each row, there	the different colu	nns to show their	7	2	10	35		
 ones add		are 3 rows.	thinking as shown b					-	·	
tens is	Add up each colu	mn, starting with the ones and	24×3=	72		210 + 3	35 = 24	5		
·	exchange if need	ed.	X 20	4		-	ard, mi	• •	•	-
			3 00	0000			ving the rid met		erent i	rows
	Move on to Place	Value Counters to show how we	00	12	X	1000	300	40	2	
	are finding group		60	60						
	number. We are	Prover Barry - Lang	and the second	+ 12	10	10000	3000	400	20	
	multiplying by 3 s need 3 rows.				8	8000	2400	320	16	
	need 3 rows.									
ones times	Formal column m	ethod with place value counters		Children to represent	Forma	Writ	ten Me	ethod		
ones is	(base 10 can also	•		the base 10 or place						
ones.	32 x 3		84 X4 =	value counters	-					
ones times tens is	32 × 3	= 0 5	TT I O	pictorially.	2	/	7	3		
tens.	T O	TO	TTHE 20	pieroriany.	X	3	X	5	-	
Because we are	111 00	3 2	144411 200		11	1/	50	21	-	
multiplying by	111 20	х 3	WIIII 000		K		F			
ten, we need to add in a zero as a	(1) 60	9 6	HH/11/1 00							
place value	11 600		132 100							
holder.			336							
					17		1			
We cannot have										
more than one digit in any place										
value column, so					1					
we need to										
exchange										
ones as ten					1			-		

<u> </u>			
When children start to multiply 3d × 3d and abstract: To get 744 children have solved 6 × 124. To get 2480 they have solved 20 × 124.	4d × 2d etc, they should	be confident with the	1 2 4 × 2 6 -7 4 4 2 -4 8 0 3 2 2 4 1 1 1 4
Conceptual variation; different ways	to ask children to solv	re 23 x 6	
23 23 23 23 23 23 ?	Mae had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? With the counters prove that 23 x 6 = 138	Find the product of 6 and 23 $6 \times 23 =$	What is the calculation? What is the product?

<u>Division</u>

<u>Vocab</u>: share, group, divide, divided by, half, divisor, dividend, quotient, remainder, exchange

STEM	Concrete	Pictorial	Abstract
sentences			

shared Sharing a range of objects Represent the **sharing** pictorially 6 ÷ 2 = 3 equally between 12 ÷ 2 = is 6 3 3 Children should also be encouraged to use their 2 times tables facts. . Use counters to represent the Children can use a bar model to help Sharing - using concrete methods We move on to use problem. Sam has 8 packs of socks. He has 16 socks in total. How many formal jottings to represent the division. socks are in a pack? Draw your representation using help us solve the the boxes and write the calculatio 4. Maths books come in packs of 8. Year division. These can 3 need 32 books. How many packs do they be in the form of need? Draw a bar model and write the calculation. 32-8= sharing circles (squares!) 3. Jack earns £44. He shares it out equally between himself and 3 friends. How They should order packs of books. much does each person get? Draw a representation you could use to find the answer. In division, we Sharing using place value counters. Children to represent the place value Children to be able to make sense of start from the $42 \div 3 = 14$ counters pictorially. the place value counters and write largest place calculations to show the process. value column. We 84 ÷ 6 = start from the right. 84 can be partitioned into 50 and 74 _ is __ tens and ____ ones. tens

divided by ____

is

St Just Primary School Calculation Policy

Conceptual variation; different ways to ask children to solve 615 ÷ 5						
Using the part whole model below, how can you divide 615 by 5 without using short division?	I have £615 and share it equally between 5 bank accounts. How much will be in each bank account?	5 615	What is the calculation? What is the answer? 100s 10s 1s			
500 100 15	615 pupils need to be put into 5 groups. How many will be in each group?	615 ÷ 5 = = 615 ÷ 5				