This policy contains the key procedures that are to be taught throughout the school. It has been written to ensure consistency and progression throughout the school. We are aiming to get each child to show fluency, reasoning and problem solving skills from EYFS Year 6.

- Although the main focus of this policy is showing the core Concrete, Pictorial and Abstract ways of solving Maths problems, it is important to recognise that the ability to calculate mentally lies at the heart of numeracy.
- Mental calculation is not at the exclusion of written recording and should be seen as complementary to and not as separate from it. In every written method there is an element of mental processing.
- Written recording both helps children to clarify their thinking and supports and extends the development of more fluent and sophisticated mental strategies.
- Children are encouraged to use the most efficient method for them, making sure they use ones they have a clear understanding of.
- The long-term aim is for children to be able to select an efficient method of their choice that is appropriate for a given task. They should do this by always asking themselves:
> 'Do I need to use manipulatives to help me?'
> 'Can I do this using drawings or jottings?'
$>$ 'Do I need to use a written method?'
> 'Can I do this in my head?'
Stem sentences are in red, these are to help children embed their learning.

Please continue daily counting at the start of the lessons - age appropriate for your year group. E.g. year 3 - embed 2/5/10 from year 2, introduce $3 / 4 / 8$ for year 3 and when ready - continue with other counting increments.

Addition

Vocab: add, plus, more than, total, sum of,
Bar model, part-part-whole, number line, tens frame, base 10 , place value counters, missing numbers,

St Just Primary School Calculation Policy

relationship and missing number)			
I need \qquad to make ten. I have \qquad left over. $10+$ \qquad is \qquad	Regrouping to make 10, using ten frames and counters/cubes or using Numicon. $6+5$ 0 0 0 0	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent base 10 e.g. lines for tens and dots for ones.	$41+8$ $\begin{aligned} & \begin{array}{l} 1+8=9 \\ 40+9=49 \end{array} \\ & +\begin{array}{r} 4 \\ + \\ \hline \end{array} \\ & \hline 49 \end{aligned}$

St Just Primary School Calculation Policy

Subtraction

Vocab: take away, less than, the difference, subtract, minus, fewer, decrease, exchange

STEM sentences	Concrete							Pictor		Abstract
First... Then... Now... e.g. First there were 4 children in the car, then 1 child got out, Now there are 3 children in the car.	Physically taking away objects from a whole (tens frame, numicon, cubes etc...)$4-3=1$							Children resources the corr can also 8 -	to draw the concrete they are using and cross out ect amount. The bar model be used. $6=2$	
The whole is \qquad The part we are taking away is \qquad Start on \qquad and count back \qquad	Counting back (using number lines or tracks) 6-2= Children start at 6 and count back 2							Children to represent what they see pictorially e.g.		Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

St Just Primary School Calculation Policy

	Finding the difference (using cubes, Numicon or other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4=$ have the same difference.
		Children to present the ten frame pictorially and discuss what they did to make 10.	When children are confident they can draw this themselves. Remind them to show order and uniform to help them.
	Column method using base 10 or place value counters. 48-7	Children to represent the base 10 pictorially. $\begin{aligned} & 35-23= \\ & \text { draw the } 3 \text { tens and } \\ & \text { remains } \end{aligned}$	Encourage children to use mental strategies

St Just Primary School Calculation Policy

Multiplication

Vocab: double, times, multiplied by, the product of, groups of, lots of, equal groups, exchange

St Just Primary School Calculation Policy

St Just Primary School Calculation Policy

Division

Vocab: share, group, divide, divided by, half, divisor, dividend, quotient, remainder, exchange

STEM sentences	Concrete	Pictorial	Abstract

St Just Primary School Calculation Policy

St Just Primary School Calculation Policy

St Just Primary School Calculation Policy

Conceptual variation; different ways to ask children to solve 615 $\div 5$					
Using the part whole model below, how can you divide 615 by 5 without using short division?	I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each bank account?	$5 \longdiv { 6 1 5 }$	What is the calculation? What is the answer?		
			100s	10s	Is
	615 pupils need to be put into 5 groups. How many will be in each group?	$\begin{aligned} & 615 \div 5= \\ & \ldots=615 \div 5 \end{aligned}$	$\stackrel{\ominus}{\odot} \stackrel{\ominus}{-}^{-}$	poogo	$\left\|\begin{array}{l} 00000 \\ 00000 \\ 00000 \end{array}\right\|$

